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Abstract: Air pollution constitutes an environmental risk, evidenced in large 
urban centres. This work applies a methodology capable of detecting the areas 
of emission of pollutants when episodes of poor urban air quality are observed. 
This is carried out coupling air quality indices proposed by United States 
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Environmental Protection Agency with the receptor model known as 
Nonparametric Trajectory Analysis. As a control case, observed concentrations 
(2013–2015) in Bahia Blanca (Argentina) were analysed, highlighting 
particulate matter as a dominant pollutant for episodes of poor air quality. 
Likewise, the application of the methodology allowed to reduce the number of 
possible stationary emission sources by 75%, and to highlight the implication 
of nearby linear sources. The strength of the methodology lies in visualising in 
real time, or in diagnostic mode, the potential areas of emission and their 
significance. 

Keywords: AQI; air quality index; criteria pollutants; receptor model; episodes 
of high concentrations; back-trajectories; SO2; PM10; risk; decision-makers. 
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1 Introduction 

At present, the World Health Organization (WHO) concludes that air pollution is 
considered an environmental risk and states that one in eight deaths are a consequence of 
it. In addition, it is estimated that half of the urban populations are exposed to values 
higher than 2.5 times the guide levels established by WHO. This situation is magnified in 
low-to-middle income countries (WHO, 2014). Particularly, both Argentina and other 
Latin American countries have a decent regulatory framework and lack a robust 
monitoring network (PAHO, 2017). 

Air pollution is explained by means of air quality indices, which are used by 
government agencies to communicate to the population about the state of air quality, at a 
certain site and time period. The United States Environmental Protection Agency  
(US EPA) defines an air quality index (AQI) based on the following pollutants: 
tropospheric ozone (O3), particulate matter (PM10), carbon monoxide (CO), sulphur 
dioxide (SO2) and dioxide nitrogen (NO2). This index is categorised into six levels (good, 
moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, and hazardous)  
(US EPA, 2014). 

Complementary to this, the receptor models are chosen by stakeholders in 
environmental air quality management as essential tools for the generation of mitigation 
policies and the development of public health plans. These models allow us to interpret 
which of the present sources are the most significant in the area and to design mitigation 
strategies. The choice of the model to implement will depend on the available 
information, such as source types and profiles and emissions inventory, among others 
(Behrentz et al., 2009; Belis et al., 2014; Hopke, 2016; WHO, 2000). For a correct 
performance, it is required that both the receptor site and the characterised species are 
representative of the region. Meteorological information and updated source profiles are 
considered relevant in this instance (Belis et al., 2014; Donnelly et al., 2011; Hopke, 
2016). 

The study of air pollution addressed in local scale with hybrid receptor models allows 
to georeferenciate the emission sources and its impact in greater urban centres. Through 
different statistical models that use the fundamental role of the wind (e.g., conditional 
probability function, conditional bivariate probability function, nonparametric wind 
regression, nonparametric trajectory analysis), authors were able to indicate that urban 
traffic, resuspended dust and other point-inventoried sources were the major emission 
sources. In general, these studies were carried out by recollecting air pollutants data in 
monitoring campaign (Argyropoulos et al., 2017; Cahill et al., 2016; Feinberg et al., 
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2019; Grange et al., 2016; Henry et al., 2019; Roig Rodelas et al., 2019; Squizzato et al.,  
2017; Wei et al., 2019). Furthermore, due to the proximity of important sources that 
exceed the territories with jurisprudence, the interest in identifying different sources of 
regional emissions, and with it, the predominant directions through the use of more 
complex hybrid models, is a common practice, normally, through HYSPLIT 
(Argyropoulos et al., 2017; Grange et al., 2016; Landis et al., 2019; Roig Rodelas et al., 
2019; Squizzato et al., 2017; Urbančok et al., 2017; Yang et al., 2020). 

The receptor model used in this work is the nonparametric trajectory analysis (NTA) 
(Henry, 2008), which seeks to identify the areas with the highest probability of 
contributing contaminants to the receptor site. This model consists of approximating the 
back-trajectories to the local scale through the kinematic model of uniform rectilinear 
motion, using local meteorological information. The advantage of the method consists in 
the association of each point of the trajectory with a spatial coordinate. The use of spatial 
coordinates is a modification of the original model by the authors of this work. 

The back-trajectories are estimated for each concentration observed at the receptor 
site during the episode, according to the following equation: 
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where the coordinates z (x, y) correspond to the point on back-trajectory ending at time j, 
Δt is the time step (temporal resolution), N is the number of steps taken backwards in 
time, vx and vy are the decomposition of wind in Cartesian coordinates estimated from 
geometric expressions for the kth time. Each point of trajectory is associated to the 
concentration (Ck) observed at the receptor site. Then each point (xi, yi) generated in each 
back-trajectory, hereinafter referred to as coordinate zi, is assembled to concentrations 
associated summarising the information in a new set (zi, Ci). The resulting trajectory (zi) 
expressed in the Cartesian system with longitudinal units (km), was approximated in its 
corresponding geographic coordinates. Then, for any point (z) defined in this grid, the 
concentration to the measurement matrix ˆ ( )C z  is estimated using a nonparametric 
regression of previously generated back-trajectories, using the Epanechnikov kernel 
(Härdle, 1990). The expected value of Ĉ  over grid point z is a result of a kernel 
regression by the following equation: 
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where h is the smoothing parameter obtained by cross validation. It should be noted that 
this estimation is influenced by the proximity to the receptor site and the parameters used 
in the regression. Finally, the location of the major sources contributing to concentrations 
of the pollutant at the monitoring site is spatially visualised. 

Many authors have used receptor models to study the areas of origin of criteria 
pollutants, with historical databases (Cahill et al., 2016; Donnelly et al., 2011; Feinberg et 
al., 2019; Grange et al., 2016; Han et al., 2017; Henry et al., 2019; Pérez et al., 2012; 
2013; Wei et al., 2019). However, the coupling of these tools with an index that defines 
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air quality reinforces the relationship between pollution levels and the impact on 
population health. Currently, there is a vacancy in the offer of similar results by 
government agencies, which use indexes to communicate the current status of frequent 
exposure to local and regional emissions (Nayebare et al., 2018; Sarigiannis et al., 2017; 
Xue et al., 2019). Such is its importance, that some authors work on advanced algorithms 
to be able to predict the state of the index (Wu and Lin, 2019) or evaluating chronic 
effects by combining the polluting criteria (Ruggieri and Plaia 2011, 2012). Another 
approach currently addressed is the geolocation of the criteria pollutant emissions 
associated with air quality in annual periods, to account for regional emissions (Yang et 
al., 2020). However, the evaluation of exposure events of short periods of time for 
analysis on an urban scale has not been strongly addressed. The study of air pollution 
addressed in local scale with hybrid receptor models allows to georeferenciate the 
emission. Based on the above, this work aims to apply a methodology capable of 
detecting in real time (or in diagnostic mode), on a local scale, the areas of origin of 
emission of pollutants against episodes of poor quality of air. This is done by coupling 
the air quality index (AQI – US EPA), that defines the episodes of interest in population 
health, and the hybrid receptor model (NTA). 

2 Methods 

The methodological scheme proposed here consists in the detection of episodes of high 
concentrations associated with alert levels for population health, and in the identification 
of the respective areas of contribution to the monitoring site. 

2.1 Detection of high concentration episodes 

The analysis of the databases seeks to define episodes, such as those concentrations that 
exceed levels of interest defined by an AQI. For example, if AQI – US EPA is used, 
episodes of poor air quality could be associated with those with a higher index than the 
‘unhealthy’ category. In this step, the air quality is estimated on an hourly basis from the 
adaptation of the measurements observed in the monitoring site (receptor site) to the 
reference times of the chosen AQI. The ‘dominant’ pollutant, which characterises the air 
quality, is the one that presents the maximum value of the index individually estimated. 

2.2 Application of the NTA receptor model 

To estimate the contribution zones, the model makes use of the concentrations observed 
at the receptor site (C) that define the episode, together with the associated wind speed 
and direction data. The number of trajectories to be estimated per episode is a function of 
the average time of the dominant pollutant, those that take place during the presence of 
calm winds (less than 1 km h–1) being rejected. 

For the pollutant under study, the average distance (r), estimated from the maximum 
and minimum distances, of the most relevant emission sources with respect to the 
monitoring site is established. From this, the (tr) back-trajectory time is calculated as the 
ratio between the radius (r) and the mode of the velocities included in the episode. 

The NTA offers as an output a matrix of georeference average concentrations, which 
can be visualised with a geographic information system (GIS) on a chromatic scale on a 
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map. Those polygons associated with the maximum concentrations represent the 
contribution areas of the contaminant to the receptor site. 

3 Application to the study of criteria pollutants in the Bahia Blanca 
district 

The district of Bahía Blanca, province of Buenos Aires (Argentina) consists of the 
homonymous city and seven other locations, among which Ingeniero White stands out 
due to its industrial-economic activity in the region. Here is located one of the largest 
petrochemical complexes of the country. Taking into account the population factor and 
the presence of many important industries, the region under study is a potentially exposed 
area to the risk of air pollution. 

A criteria pollutants monitoring station, under the supervision of a Municipal 
Technical Committee, is located in the vicinity of the petrochemical area (38º45′32″S, 
62º17′08″W). This station reports average hourly values of tropospheric ozone (O3), 
particulate matter (PM10), carbon monoxide (CO), sulphur dioxide (SO2) and dioxide 
nitrogen (NO2) on the air, since 1997, and they are published on a web platform 
(http://quepasabahiablanca.gov.ar/tiempo_real/calidad_de_aire/). In this work, the 
database corresponding to the 2013–2015 period, of pollutant observations and 
meteorological parameters, is analysed. The latter are provided by the national 
meteorological service station located at (38º43′13″S, 62º09′27″W). 

The technical survey of stationary emission sources was taken from the report of the 
Programa Integral de Monitoreo (PIM – Comprehensive Programme of Monitoring), 
updated for 2015, elaborated by the Executive Technical Committee of the Bahía Blanca 
municipality (BB ETC, 2016). It presents an update of the Inventory of Gaseous 
Emissions from point emission sources, provided by the municipality (Figure 1).  
It follows that the main contributors in sulphur oxides (SOx) emissions are the 
thermoelectric power station ‘Central Piedra Buena S.A.’ (82.8% annual) and oil refinery 
‘Petrobras Argentina S.A.’ (17.2% annual). The SO2 emissions in the plant are directly 
related to the amount of sulphur in the fuel used. For PM10 it is found that Petrobras 
Argentina S.A. emits 46% of the annual tons received, followed by Central Piedra Buena 
S.A. with 15%, out of a total of nine declared companies. According to the inventory of 
fixed emissions, of the eight companies that emit NOx, similar annual emissions are 
observed by Central Piedra Buena S.A. and TGS (29%), followed in third place by PBB 
Polisur (14%). With respect to CO, seven companies are declared, of which TGS 
(43.4%), Solvay Indupa (24.4%) and Cargill (22.7%) are highlighted. 

Since the analysis is carried out in the territory of the Bahía Blanca district, province 
of Buenos Aires, Argentina, it is arranged to use the index proposed by the US EPA. This 
decision was made because there is no index that considers the exposure of population 
health to air quality for short periods of time. As a result, the district uses the US EPA 
index to report the daily status of air quality. The AQI -US EPA has values considered 
representative and reliable for the region. However, it is highlighted that the methodology 
is suitable to apply other criteria of air pollution. 

Taking as an alert level the category of ‘unhealthy’ (AQI – US EPA), eight episodes 
of high concentrations were detected. The episodes have in common PM10 as the 
dominant pollutant; two of them were selected to deepen their study. The selection 
criteria applied were defined based on those with the highest AQI (from unhealthy to 
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hazardous) and greatest availability of contaminant data. On the other hand, a third case 
is analysed in which the air quality is ‘moderate’ (AQI – US EPA), dominated by SO2, in 
order to show the versatility of the model. The third case is selected because the 
contaminant has only two main sources declared in the source survey (PIM) and because 
it is a contaminant related to anthropogenic sources. 

Figure 1 Location of the monitoring site (red star). The polygons represent the companies 
declared in the in the technical survey of stationary emission source for the year 2015 
(see online version for colours) 

 
Source: Executive Technical Committee of the Bahía Blanca Municipality 

3.1 First episode: 18 November, 2014 

This episode is governed by the PM10; the air quality remains ‘unhealthy’ from 2 am (red 
level) until 9 am on 18 November, 2014. From the time series that describes the episode 
(Figure 2), in which the concentrations observed at the monitoring site are analysed, it 
follows that the contaminant levels begin to increase from 10 am on 17 November until  
2 am the next day. Previous to the episode, the air quality remained ‘unhealthy for 
sensitive groups’ (orange level) from 3 pm on 11/17/2014 to 2 am on 11/18/2014, during 
which the moving concentrations were between 155–254 μg m–3. From the time series it 
follows that the episode has a duration of 8 h (moving concentrations between  
255–354 μg m–3). 

3.2 Second episode: 24–26 April, 2015 

On the other hand, the winds associated with the period in which the concentrations 
contribute to poor (“unhealthy”) air quality, mainly comprise the south, southeast and 
east directions. The inventoried emission sources of the PM10 are located at an average 
distance of 2.5 km. Then, for a frequent speed of 46 km h–1, the path time used  
in the NTA is 3.26 min. As a result, the polygons with the highest concentrations  
(365–572 µg m–3) are observed to the north-northwest of the receptor site, where oil 
refinery, National Route 3 and part of the perimeter roads of the city are located. It should 
be noted that the index is defined by a 24-hour moving average for this pollutant  
(Figure 3). This episode responds to the eruption of Calbuco volcano, located in southern 
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Chile, and to the west-southwest of the monitoring site (Ingeniero White), evidencing an 
air quality considered “unhealthy” (average concentrations higher than 354 μg m–3), on 
the monitoring site, from 24 April, 2015 at 4:00 pm to 2:00 am on the 26th of the same 
month. In the present episode dominated by PM10, the quality index exceeded the 
maximum proposed by the US EPA, whose category is “hazardous”, from 10 pm on day 
24 until 7 pm on day 25. In the time series (Figure 4) one can visualize how 
concentrations observed (measurements at the monitoring site) increase from 1 pm on  
24 April, 2015 level of “unhealthy for sensitive groups” (155–254 μg m–3), which  
quickly transits to the categories ‘unhealthy’ (255–354 μg m–3), ‘very unhealthy’  
(355–424 μg m–3) and ‘hazardous’ (>425 μg m–3) within 40 h. 

Figure 2 The concentrations observed of PM10 (µg m–3) in the receptor site for the episode from 
18 November, 2014 are observed in the upper box. Below this box, a time grid with the 
wind directions associated to each concentration observed and level of AQI (with 
colour scale) is exposed (see online version for colours) 

 

Figure 3 Average concentrations of PM10 (µg m–3) obtained by NTA during the event  
18 November, 2014. The receptor site is represented with a light blue star and the 
polygons in blue chromatic scale represent the companies declared in the in the PIM for 
PM10 (see online version for colours) 
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Figure 4 The concentrations observed of PM10 (µg m–3) in the receptor site for the episode from 
24–26 April, 2015 are observed in the upper box. Below this box, a time grid with the 
wind directions associated to each concentration observed and level of AQI (with 
colour scale) is exposed (see online version for colours) 

 

As in case 1, the back-trajectory time of 8.8 min is associated with the most frequent 
winds of 17 km h–1 for the episode. When applying the NTA for the period corresponding 
to the first 24 h that include the first value corresponding to the category of “unhealthy”, 
it is observed that the concentrations of the PM10 come from a wide range of directions, 
from west to south clockwise (Figure 5). In this regard, it is needed to record natural 
phenomena, outside the local scale, that can reach and impact the region under study. 

Figure 5 Average concentrations of PM10 (µg m–3) obtained by NTA during the event 24–26 
April, 2015. The receptor site is represented with a light blue star and the polygons in 
blue chromatic scale represent the companies declared in the in the PIM for PM10  
(see online version for colours) 
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3.3 Third episode: 2 August, 2015 

In this case, an episode is studied where the air quality goes from being ‘good’ to 
“moderate”. This case is used to observe the goodness of the tool, taking SO2 as the 
representative pollutant. Developed at 10 pm on 2 August, 2015 (Figure 6), the moving 
average is equal to the concentration observed at the monitoring site, because the 
parameter integration time is equal to the measurement frequency. 

Figure 6 The concentrations observed of SO2 (ppb) in the receptor site for the episode from  
2 August, 2015 are observed in the upper box. Below this box, a time grid with the 
wind directions associated to each concentration observed and level of AQI (with 
colour scale) is exposed (see online version for colours) 

 

The application of the NTA (Figure 7), for a time of 11.5 min of back-trajectory, allows 
observing a polygon with higher concentrations located at north-northwest of the 
monitoring site, where the oil refinery is located, associated with 17% of emissions of the 
contaminant. 

For the first two episodes defined by 24 h, Root Mean Square Error (RMSE) was 
calculated. For the first (18 November, 2014), the variability of the PM10 presents an 
average value of 23.85 μg m–3 in the range of 0 to 135.2 μg m–3 (median: 17.4 μg m–3, Q1: 
12.1 μg m–3, Q3: 28.7 μg m–3), with 82% of the data with values less than 33.80 μg m–3. 
Similarly, in the second event developed on 24 April, 2015 by PM10, the variability of the 
data presents an average of 13.27 μg m–3 in the range of 0 to 217.55 μg m–3  
(median: 3.04 μg m–3, Q1: 0.01 μg m–3, Q3: 7.94 μg m–3), with 91% of values less  
than 54.39 μg m–3. On the other hand, in the episodes in which the air quality is  
defined by a pollutant with hourly impact, the variation of the observed data 
corresponding to the direction of the intervening wind (during the episode) was 
calculated for the period under study; without considering calm winds since they are not 
modelled. Then, the last episode that analyses SO2 for 2 August, 2015 presents a 
variability of 2.94 ppb. 
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Figure 7 Average concentrations of SO2 (ppb) obtained by NTA during the event of 2 August, 
2015. The receptor site is represented with a light blue star and the polygons in blue 
chromatic scale represent the companies declared in the in the PIM for SO2 (see online 
version for colours) 

 

4 Discussion 

The cases under study highlight the virtues and limitations of coupling the categorisation 
obtained through AQI with receptor model as an air quality analysis tool. By means of 
the AQI – US EPA it was observed that PM10 was the dominant pollutant of the episodes 
of poor urban air quality observed for the period under study. This situation is recurrent 
in an international context in developed countries (Argyropoulos et al., 2017; Grange et 
al., 2016; Guo and Lu, 2019; Karagulian et al., 2015). In addition, the application of the 
methodology allowed to limit the number of emission sources of the dominant pollutant 
by 75%, and to highlight the implication of nearby linear sources, especially in the 
resuspended dust of high traffic roads (National Route 3). These emissions are the most 
frequent in studies carried out in other large urban centres (Argyropoulos et al., 2017; 
Cahill et al., 2016; Feinberg et al., 2019; Grange et al., 2016; Squizzato et al., 2017). In 
the first case, the most probable area of contribution to poor air quality could be 
associated with a company that emits about 46% of the particulate matter (PM10) in the 
region and a linear source (National Route 3). This last source concentrates an annual 
average daily traffic of approximately 13,852 vehicles between kilometres 685.7 and 
689.3 (Seguridad Vial Nacional, 2018). On the other hand, the tool demonstrates its 
limitation by trying to describe an episode considered regional (ashes from the Capulco 
volcano), even if the directions of origin estimated with the model are consistent with 
those expected. The distributions of sources associated with regional emissions are 
usually estimated through hybrid models that analyse back-trajectories of more than 24 h, 
such as the HYSPLIT model (Argyropoulos et al., 2017; Nayebare et al., 2018; Roig 
Rodelas et al., 2019; Squizzato et al., 2017; Yang et al., 2020). Finally, the third case 
evidenced the good performance of the NTA tool in the definition of the probable 
contribution zone, where one of the two industries that contribute to sulphur dioxide 
(SO2) emissions in the region is located. 
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The scheme limitations for diagnosing poor air quality events (proposed 
methodology) are mainly linked to the selected receptor model. The representativeness of 
the scenario has as a critical point the interpolation between the pollutant data and the 
meteorological parameters, which must have at least the same temporal resolution, the 
latter being representative of the monitoring site. Regarding the model, the estimated 
back-trajectories can be affected by the topography of the place, as well as by the 
presence of obstacles between the monitoring site and the area under study. When 
applying the methodology, a great knowledge of the emission sources in the region is 
required to see how close the model’s output is to reality (Henry, 2008, 2019; Feinberg et 
al., 2019; Wei et al., 2019). 

5 Conclusion 

The benefits presented by the articulated use of an AQI and a receptor model are 
highlighted in this work. The results are descriptive, interoperable and simple to interpret, 
which facilitates their implementation as a management tool for analysing the results 
and/or communicating them to the population. 

The coupling of the AQI-US EPA with the NTA allows the evaluation of the origin of 
criteria pollutants, in real time or in diagnostic mode, for episodes of high concentrations 
that cause poor air quality in a monitoring site. Besides, the coupling of these tools shows 
the ability to relate emission and local weather conditions, and to point out those potential 
sources of contribution, that are not necessarily those with the highest emissions emitted 
in the region. It is remarked that, during the period studied, episodes of poor urban air 
quality are associated with particulate matter. 

Finally, the proposed methodology is intuitive, easy to interpret, and offers quick 
visual results to interpret the contamination levels of any site under study, at the local 
level. 
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